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A theoretical analysis of the flow pattern at a solid surface in three-dimensional supersonic 
flow is presented. The purpose of the study is to develop the additional information necessary 
to overcome the nonuniqueness associated with the body tangency condition in three 
dimensions. The analysis is based on the fact that three-dimensional waves propagate locally 
exactly as they do in axisymmetric flow when viewed in the osculating plane to streamline. 
The supersonic flow over an infinite swept corner is examined by both the classical solution 
and the three-dimensional solution in the osculating plane; the results are shown to be iden- 
tical. A simple numerical algorithm is proposed which accounts for the three wave surfaces 
that interact at a solid boundary. 

Future success in the prediction of complex three-dimensional supersonic flow 
fields will require increased theoretical understanding of such phenomena. In 
particular, the key to accurate and reliable numerical computations lies in the proper 
imposition of boundary conditions. A variety of three-dimensional boundary point 
algorithms have been developed which are based on method of characteristic type 
analysis of the governing equations. The techniques reported in 11-5 1 rely on the 
reduction of the full equations to a reference plane system in two space dimensions. 
The reference plane is employed in the vicinity of the boundary point in which the 
calculation is performed. The orientation of this plane relative to the boundary 
surface has been chosen, in the past, based on intuitive and ad hoc reasoning. 
Velocity components and gradients normal to the reference plane appear as forcing 
terms in the characteristic equations. Theoretical analysis of the full three- 
dimensional Euler equations [ 6 1 indicates that there is a unique plane in which the 
flow is equivalent to an axisymmetric (a two space dimension) flow. There is no 
velocity component normal to this plane and the only term appearing in the equations 
beyond pure planar two-dimensional expressions is a velocity gradient term 
analogous to that appearing in the axisymmetric equations. It is the object of this 
paper to study the implications of employing these concepts in the boundary point 
calculations involved in three-dimensional supersonic flows. 

The complexities of three-dimensional flow calculations as compared to their two- 
dimensional counterparts are manifest in the application of the boundary conditions. 
In two-dimensional supersonic flow there is a well-developed theoretical basis [ 7-91 
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upon which to model the numerical simulation of the boundary surface/flow 
interactions. Moretti 110, 11 ] was the first to recognize that the standard finite 
difference algorithms employed for interior point calculations had to be replaced by a 
local solution based on the method of characteristics at solid boundary points as well 
as at shock points. Later, Abbett [5] showed how to combine finite difference 
calculations with a local Prandtl-Meyer solution at a solid boundary and thus greatly 
reduce the complexity of the boundary point calculation. DeNeff [ 12 1 and Rudman 
[ 13 1 extended this method to shock surface and contact surface boundary point 
calculations. The central new feature that arises in the three-dimensional calculation 
is the nonunique nature of the boundary conditions. At a solid surface, for example, 
the boundary condition that the velocity vector be tangent to the surface is a single 
condition for the two unknown cross flow angles. In two dimensions a single flow 
angularity unambiguously determines the ratio of the two velocity components. In 
three dimensions the surface tangency condition determines only a single linear 
relationship between the two cross flow velocities. The resolution of this ambiguity is 
addressed. 

The class of boundary point algorithm under consideration employs first a finite 
difference calculation and then a “correction” to satisfy the surface tangency 
requirement. That is, the flow properties at the unknown point are computed using a 
variation of the finite difference scheme at the interior points. A modified interior 
point calculation is necessary because no mesh points are computed interior to the 
body. Either one-sided differences away from the body are employed to model the 
normal derivatives or a reflection plane is used to define hypothetical flow properties 
at a surface one mesh width interior to the body. The flow properties so computed at 
the unknown point (Fig. I) do not in general satisfy the body tangency condition and 

FIG. I. Schematic of the computational mesh at a solid boundary point. 
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are denoted FD (finite difference). Following the methods of [ 5, 8, 9 ] a wave is added 
to the solution at the boundary point (the correction) to bring the velocity in line with 
the desired direction. In two-dimensional flow this is a simple Prandtl-Meyer wave. 
In three-dimensional flow the orientation of the “correction” wave is not known a 
priori. Any rotation into the tangency plane satisfies the boundary condition. In the 
notation used in Fig. 1 the value of Q is unknown and must be determined from a 
detailed analysis of the flow. 

The first step in developing the required information is recognizing that three- 
dimensional supersonic flow is locally directly analogous to a two space dimension 
(axisymmetric) flow [6] when viewed in the osculating plane to the streamline. In 
supersonic flow all changes in flow properties are brought about by wave surfaces. 
Each wave surface in three-dimensional flow when viewed locally is a plane wave 
moving at the local speed of sound relative to the fluid. The component of velocity 
normal to the wave front is sonic. Beyond that the orientation for the wave front is 
arbitrary so that it can rotate the oncoming velocity both vertically and horizontally 
depending on its strength and direction. In two-dimensional flow, by contrast, the 
waves rotate the flow either upward or downward (first or second family waves) 
about an axis perpendicular to the plane of motion. In three-dimensional flow the 
rotation takes place about the binormal vector to the local streamline direction. The 
direction of the local binormal vector is determined by the wave orientation. 

In the following sections further discussion of the role of the osculating plane in 
three-dimensional flow will be presented. These concepts identify two main bicharac- 
teristics in the fore Mach cone (the intersection of the cone and the osculating plane) 
that determine the solution at any point. This description of the flow is then recon- 
ciled with the classical solution for flow over an infinite swept expansion (or 
compression) corner which is the prototype model for plane wave solutions. It is 
shown that the classical solution which is achieved by examining the flow in a plane 
normal to the sweep line is identical with the solution employing the osculating plane. 
For infinitesimal rotations the flow over the corner is a Prandtl-Meyer expansion 
(compression) for the total velocity vector. The rotation is about the binormal vector 
defined by Vp x q. At the body surface three wave fronts determine the solution: an 
incident wave, a reflected wave, and a wave emitted by the body. In general, the 
sweep angle of the incident/reflected waves has a binormal vector associated with it. 
In the context of numerical calculations these waves are considered infinitesimal, i.e., 
the body slope and the flow properties change in proportion to the step size. Because 
infinitesimal rotations can be added, the rotations of each wave can be combined to 
yield a single binormal vector which defines the interaction at the body surface. A 
three-dimensional boundary point calculation procedure is set forth based on these 
ideas. In the procedure the incident wave and reflected waves are computed as part of 
the finite difference calculation, substantially simplifying the algorithm. The final 
rotation (correction) about the binormal vector associated with the change in body 
slope accounts for the emitted wave. 
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THREE-DIMENSIONAL WAVES 

A streamline in three-dimensional space has the general properties of any line in 
space. Figure 2 shows the unit vector triad defined by the tangent, normal, and 
binormal vectors at point 0. At 0 the velocity vector is parallel to the tangent vector. 
The streamline has a principal curvature in the normal direction. The acceleration of 
the fluid element at point 0 is in the t - n plane and the streamline remains in the 
t - n plane to second order. The streamline has a torsion in the binormal direction 
but this results in a higher-order displacement. The Euler equations written using as 
local Cartesian coordinates t, n, b with velocity components, U, V, W are 161 

v-4 + @v), + PJ+-b = 02 

puu, +pvu, +pt = 0, 

puv,+pvv,+p,=0, 

pb = 0, 

$(U’+ V’)+yp/(y- l)p=h,. 

(1) 

(2) 

(3) 

(4) 

(5) 

The fact that W = 0 at point 0 has been employed throughout. The momentum 
equation in the b direction (Eq. (4)) expresses mathematically the fact that there are 
no accelerations (or forces) in the b direction. Equations (lt(3) and (5) are the 
familiar Euler equations in two space dimensions with the single additional term pW,, 

t = UNIT TANGENT VECTOR 
A 
n = UNIT NORMAL VECTOR 

b = UNIT BINORMAL VECTOR 

FIG. 2. The osculating plane to a streamline. 



288 RUDMAN AND MARCONI 

in the continuity equation. This term is analogous to the forcing term in axisymmetric 
flow and produces intensification or decay as the wave progresses. Based on our 
understanding of axisymmetric flow, this term does not produce qualitative changes 
in the wave nature of the solution. 

The local solution to the flow is defined by a two space dimension problem exactly 
like axisymmetric flow. Figure 3 is a schematic of the wave pattern near point 0. The 
intersection of the Mach cone through 0 and the osculating (t-n) plane are two 
bicharacteristics. These two lines carry the same characteristic information as first 
and second family waves in axisymmetric flow. The full three-dimensional equations 
defined the Mach cones as possible characteristic surfaces as an expression of the fact 
that wave fronts can propagate at any arbitrary orientation to the local velocity 
vector. The local analysis presented in [6] and sketched out here shows that when the 
flow is not singular at point 0 only two bicharacteristics are at work. These bicharac- 
teristics are in the osculating plane containing Vp, the only force on the fluid element. 

In order to develop further confidence in these ideas and get quantitative results, 
we examine the model problem of an infinite swept expansion using the classical 
solution and then the osculating plane analysis. The solution is examine at the point 
where the deflection occurs so that no wave intensification or decay is considered. 
Figure 4 is a sketch of the flow which is infinite in the y or chord direction. A 
uniform flow parallel to a flat surface expands about a corner (true angle normal to 
the sweep line S) which is swept relative to the oncoming velocity vector by the angle 
/1. In the classical solution the oncoming velocity vector is decomposed into 
components normal and tangential to the sweep line. The tangential velocity vector is 

OSCULATING PL 

MAIN BICHARACTERISTIC 

FIG. 3. The Mach cone and the main bicharacteristics. 
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FIG. 4. Schematic of the geometry for the infinite swept expansion corner. 

unchanged by the corner while the normal component undergoes a two-dimensional 
expansion through the angle 6. Denoting downstream conditions by 2 and oncoming 
conditions by 1, 

91 = 41nfi* + 911 E 
^ 1 

92 = q2nN2 + qzt T, 

(6) 

(7) 

where $ is the unit vector normal to the sweep line lying on the surface and f is the 
unit vector tangent to the sweep line. Furthermore, 

q2n - q,n = q,n6/&@m3 = q,nd tan,uu,, (8) 

q2t = q1t3 (9) 

M, = M, cos A, (10) 

where Eq. (8) is the Prandtl-Meyer relationship for an infinitesimal wave which turns 
a flow at Mach number M, an angle S. Combining (8) and (9) with (7), using 

13, = (cos A cos 6, sin A, cos 6 - sin S), f= (sinA, -cosA, 0), 

and retaining only first-order terms, 

q2=q,(1 +6 cos2A tanfin, 6 sin/i cosA tanpu,, -6 cosA), (11) 

where q, is the magnitude of the upstream velocity. 
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The change in the magnitude of the velocity vector is given by 

4 42---l -z----z 
41 41 

d/(1 + 6 cos’ /i tanp,)* + (6 sin LI cos LI tanpJ2 + d2 cos* /i - 1; 

retaining only the highest order terms 

Aq/q, = 6 cos2 A tan p,, . (12) 

A sketch of the wave pattern is shown in Fig. 5. A plane wave is emitted by the 
sweep line at a true angle ,u~ given by the expression 

sin ,u, = l/M, = l/M, cod = sin ,u,/cos A. 

The flow is turned by this wave front about a vector 

R = q, x q2/qi = (0,6 cos(1, 6 sin/1 cos/f tan,c,). (13) 

WAVE FRONl 

a 

b 

FIG. 5. Wave pattern at swept leading edge. (a) Wave front plane. (b) Top view. 
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It is interesting to note that the rotation line is not parallel to the sweep line; in fact, 
it has no x component. It is inclined to the x -y plane by the angle /3 

tan/3=cothu, sin/i. (14) 

The direction of the initial and final velocity vectors can be related by a simple 
rotation about the vector R. The angle between these two directions in the plane 
normal to R is (see Appendix) 

6’ = 6 cos A cos p, /cos pn = 6 cos’ A cos ,u, /dies’ A - sin’ p,. (15) 

In the following paragraphs it will be shown that this exact solution can be 
achieved by solving the three-dimensional flow problem using the osculating plane. 
The bicharacteristic in the osculating plane is first located as the line of tangency of 
the wave front leaving the swept leading edge and the Mach cone. The osculating 
plane is then shown to be perpendicular to the rotation vector R from the classical 
solution. The b^ vector and the R vector are parallel and the required deflection is 
exactly that given by Eq. (15). Then it is shown that the final velocity achieved by 
expanding (or compressing) the total velocity q1 through the rotation 6’ results in the 
same magnitude of the final velocity as the classical solution. Thus since the rotation 
direction, magnitude of rotation, and final velocities are identical, the two solutions 
are identical. 

Referring to Fig. 6, at any point on the sweep line a Mach cone is emitted with half 
angle ,L, = sin-‘(l/M,). The Mach cone at the origin is shown on the figure but all 
others are similar. The wave front attached to the sweep line rests on the Mach cones. 
The intersection (tangency line) of this wave front and the Mach cone occurs along a 
line (bicharacteristic) which can be easily found geometrically using vector analysis 
(see Appendix). In the cross-sectional view (Fig. 6b) the angle < locating this line is 
given by 

cos l= tanp, tan A. (16) 

The tangent of this angle can be found by standard trigonometric relationships and 
related to pL1, (see Appendix) 

tan < = l/tan ,uu, sin A. (17) 

A vector tangent to the plane containing the intersection line and the axis of the 
Mach Cone (streamline direction) is therefore 

T = (0, -1, tan <). 

A vector parallel to the rotation vector R (Eq. (13)) is 

R, = (0, 1, sin A tanp,). 

The dot product of R, and T is always zero. 

T-R,=-l+tan{sinAtanp,=-l+l=O (18) 
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TANGENCY LINE 

MACH CONE 

w z 

OSCULATING PLANE 

FIG. 6. The Mach cone, osculating plane, and wave front plane for the swept expansion. (a) Three- 
dimensional view. (b) Cross section in p - z plane. 

Therefore the 6 vector, which is normal to the osculating plane, and the R vector are 
parallel. 

The 6 vector and R are parallel and the same turning angle 6’ is specified by 
Eq. (15) in both solutions. All that remains is to show that expanding the total 
velocity q, an amount 6’ changes its magnitude to the same value as the classical 
solution. The change in velocity is given by the Prandtl-Meyer expression, (This is 
the expression used in Eq. (8).) 

Aq/q, = -A0 tanp, 

In this case A0 = -a’, so Aq/q, = 6’ tan ,D, . Using the value of 6’ given by Eq. (15), 

Aq/q, = 6 cod sin ,u, /cos p,, ; (19) 
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M, = M, cos A, therefore 

sinpi = sinpu,/cosA. 

Substituting this in Eq. (19) yields 

Aq/q, = 6 cos2 A tanp,, (20) 

The results are identical to Eq. (12). 
The conclusion is summarized in Fig. 7. The flow over the swept expansion (or 

compression) corner can be evaluated by using the bicharacteristics in the osculating 
plane. The orientation of the osculating plane is determined by the relative orientation 
of the sweep line and the oncoming velocity. In the osculating plane, pig. 7b, the flow 
is two-dimensional and the incoming wave is oriented at the free stream Mach angle 

PI. 

OSCULATING PLANE 

FIG. 7. Three-dimensional representation of swept expansion corner. (a) The main bicharacteristics 
for the swept corner. (b) Characteristics in the osculating plane. 
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THE BOUNDARY CONDITIONS AT A SOLID WALL 

The purpose of the previous discussion was to demonstrate that the wave processes 
in three-dimensional flow are in fact locally equivalent to the familiar two- 
dimensional wave process. The passing of an infinitesimal strength wave front in 
three-dimensional flow produces a change in flow direction, magnitude of velocity, 
and hence pressure and density given by the Prandtl-Meyer relationship. The orien- 
tation of the deflection is given by a rotation about the binormal vector whose 
direction is determined by the relative orientation of the oncoming velocity and the 
wave front. In general in a three-dimensional flow there can be an arbitrary number 
of wave fronts passing a given point. Each wave front has a given strength and 
associated binormal vector. Because the waves under discussion are infinitesimal in 
strength, the rotations they produce are additive as are the increments in velocity. 
Therefore at any given point the effect of all wave fronts can be added to produce one 
binormal vector associated with all the changes in the flow properties at that point. 

The wave pattern at a solid surface is shown schematically in Fig. 8. In general 
there are three wave fronts that must be considered: an incident wave, its reflected 
wave, and an emitted wave. The incident wave originates in the flow and strikes the 
boundary. Upstream of this wave the flow is parallel to the surface. A reflected wave 
front originates at the body surface to bring the flow parallel to the surface. These 
two waves intersect the body along line BB in Fig. 8. In addition at point 0 the body 

EMITTED BODY WAVE 

A 

FIG. 8. Wave pattern at a solid surface. 
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surface may change orientation. This results in a wave front moving away from the 
surface which originates on the body along line AA. This wave front rotates the 
velocity vector to make it parallel to the new body direction. The lines AA and BB 
are swept at different angles to the oncoming flow. This is one reason that the three- 
dimensional boundary condition is more complex than the two-dimensional coun- 
terpart. In two-dimensional flow AA and BB are coincident as are the emitted and 
reflected waves. In that case there is no need to distinguish between the reflected wave 
and the emitted wave. 

With this theoretical background it is now possible to suggest an algorithm for the 
correct imposition of the boundary condition at a solid surface in three-dimensional 
flow. Figure 9 shows a portion of the computational mesh. At station x all flow 
properties are known at the interior points and the boundary points. The boundary 
point denoted N at station x + dx is to be computed. Using a grid that is orthogonal 
to the body surface, an additional line of mesh points interior to the body is defined 
using reflection conditions (more discussion later on these values). The standard 
interior point calculation is performed at point 0 to compute values at N. The values 
so computed at point N account for the incident and reflected waves by virtue of the 
construction of the reflected points. The emitted wave is now added by expanding (or 
compressing) the flow to the new body slope. This can be achieved by either of the 
two methods discussed in the previous paragraphs. The sweep line of this expansion 
is determined by taking the cross product of the new body normal at N and the 
normal at 0 (Fig. 10). 

The one question that remains is the specification of the flow properties on the 
reflection plane. The flow properties required on the reflection plane are computed by 
the usual formulas despite the fact that there is wave intensification due to the 

UNKNOWN POINT 

MARCHING DIRECTION 

cl INTERIOR POINTS 

0 BODY POINTS 

A REFLECTION POINTS 

FIG. 9. Computational mesh for boundary point calculation. 
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FIG. 10. Geometry for emitted body wave. 

velocity gradient normal to the osculating plane. Scalar variables and velocity 
components parallel to the plate are reflected using symmetry conditions while the 
velocity component normal to the plane is reflected using antisymmetry. Figure 1 la 
shows a schematic of the osculating plane at the boundary point N for the 
incident/reflected wave process. Figure 1 lb is the wave pattern in the osculating 
plane. The characteristic starting at B reaches the body surface at N and propagates 
into the flow as the reflected wave. In the osculating plane the wave propagation 
process is equivalent to an axisymmetric flow [ 6 1. The characteristic equations 
governing axisymmetric waves are [ 71: 

dv+dt?=Kds along AN, C-21) 

dv-d6=Kds along BN, (22) 

where v is the Prandtl-Meyer function, s is distance along the characteristic, and K is 
the forcing term due to the velocity gradient normal to the characteristics. 

These equations are integrated in the usual manner, 

v, - v4 + e, - BA = +(K, + K&J s,,, + O(s”), (23) 

vy - vg - e,v + e, = +(K~ + K,~) s,,,, + o(s~). (24) 

Here s,, and sBN are the distances from A to N and B to N, respectively, 0 is the flow 
inclination relative to the x axis, and the coordinate n is measured normal to x 
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OSCULATING PL 

I ,  REFLECTED WAVE 

INCIDENT WAVE 

FIG. 11. Schematic showing the osculating plane for the incident and reflected waves. (a) 
Computational mesh. (b) Osculating plane. 

(Fig. 11). By virtue of the construction of the flow properties the values at A and B 
are related as follows: 

VJ = v, + ;v$z; + O(h3), (25) 

f?, = o;n, + +e;n: + O(h3), (26) 

K,=K,+K:,n,+fK;nj+O(h”). (27) 

The subscript J can have the value A or B, ( )’ denotes differentiation with respect to 
n, and h is the distance Ax. The values of rz,, and n,# are given by 

fiJ = -h/2[tan(O., F ,u~) + tan(8,. f P.,)]. C-28) 
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Subtract Eq. (24) from Eq. (23) and solve for BN using Eqs. (25)-(28): 

0, = SW.4 - %A S.4N + f(n, + %)[el + m, + Fv)(n, + %Jl(s,, + SAN) 

+ f<v: + K:SA‘J(nA - $3) + gynfi + n;>/@l, + n,)] + O(h3). 
(29) 

The factor (n, - nB) and sAN are both order h. Therefore, the first term in the 
expression for B,,, is order h2. The factor (II, + nB) is order h/3,, (see Appendix) and is 
therefore higher order. 

0, = O(h2). (30) 

The result sought is Eq. (30). The incident/reflected wave system produced by the 
reflection construction produces no flow deflection to lowest order. 

CONCLUSIONS 

An algorithm for the boundary point calculation at a solid surface in three- 
dimensional flow has been proposed. It is based on an analysis of the three- 
dimensional wave pattern that occurs at the surface. In three-dimensional flow the 
body tangency condition does not uniquely determine the velocity direction at the 
boundary. The additional information necessary to complete the solution is contained 
in the wave pattern at the boundary point. For a solid surface an incident and 
reflected wave and a wave emitted by the body represent the interaction of the flow 
with the boundary. The algorithm proposed accounts for these processes in a 
relatively simple manner and is in fact a combination of two widely used techniques. 

In the process of studying the boundary point algorithm several important concepts 
in three-dimensional supersonic flow were developed. Frohn [6] showed that in the 
osculating plane to the streamline the wave propagation is locally exactly equivalent 
to an axisymmetric flow. Using this concept the model problem of the infinite swept 
expansion or compression corner was analyzed by classical methods and by the 
three-dimensional osculating plane analysis. The solutions were shown to be identical. 
The relative orientation of the wave front to the oncoming velocity defines the 
binormal direction or rotation (6) vector associated with the wave. The intersection of 
the osculating plane and the Mach cone defines the two bicharacteristics which 
determine the solution. At a point in a three-dimensional flow there are an arbitrary 
number of wave fronts each with an associated b vector. For infinitesimal strength 
waves a resultant b vector can be defined because infinitesimal rotations are additive. 

The boundary condition at a contact surface discontinuity is the next logical 
problem to study. The wave analysis presented here can be used to examine that 
problem where there are six wave fronts at work. On each side of the contact surface 
an incident wave gives rise to a reflected wave and a transmitted wave on the other 
side of the contact surface. 
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APPENDIX 

I. Evaluation of d’ 

The unit vectors 4, and i2 are parallel to the initial and final velocity vectors and 
are related by the formula 

4* = 4, + l&Y x s ,̂, (AlI 

where R^ is the unit vector parallel to the rotation vector and 6’ is the angular rotation 
between G2 and 4,. 

It = (0, cos ,uu,/cos ,u, sin A sin ~,/cos fl). 

Using 4, = (l,O, 0) in Eq. (Al), 

fj, = (1,6’ sinl/i sin p,/cos p, -6’ cos ,uu, /cos ,L). (‘42) 

Vector 4, is parallel to the surface whose normal is 

nz = (6 cos A, 6 sin A, l), Q2 . n, = 0. (A3) 

Substituting Eq. (A2) in Eq. (A3) and solving for 6’ 

Eliminate COS,U, by 

6’ = 6 cos ‘4 cos p/cos pn. (A4) 

sin p’n = sin pfC0S A, (A5) 

cosp, = vG-Gq= d/1 - sin*,u/cos* A = V cos* A - sin* p/cos A, (A6) 

6’ = 6 COS* A cos ,u/\/cos’ A - sin* ,u. (A7) 

II. Derivation of Eq. (16) 

The normal vector to the cone y* + z* = x2 tan* ,D shown in Fig. 6b is 

N = (--tan* p, y/x, z/x). (4 

For the point on the cone located by the angle <(Fig. 6b) 

y/x = -tan ,u cos C, z/x = tan iu sin <. 
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Substitute into Eq. (A8) and normalize 

n^ = (-sin ,4 -cos c cos ,k sin c cos fl). (A9) 

The plane tangent to the cone (and passing through the origin) is 

-x sinp-y cos,u cos~sz ~0s~ cosr=O. 

The trace of this plane in the z = 0 plane is 

y/x = -tan p/cos r. (AlO) 

The sweep line is given by the equation 

y/x = -l/tan A. (All) 

Comparing (AlO) and (Al l), the value of cos < which corresponds to the sweep line 
A is 

cosr=tanfi tanfl. (A121 

III. Evaluation of tan < 

Using the value of cos < given in Eq. (16) 

tan~=sin~/cos~=~l-cos2~/cos~=\/I-tan2~tan2A/tan~tanA, 

tan c = Vcos’ p cos’ A - sin’ ,u sin’ A/sin ,u sin A, 

tan r = \/( 1 - sin’ p) cos’ A - sin* p( 1 - cosi A)/sin ,u sin A 

=dcos2A-sin2p/sinp sin/i. 

Using Eqs. (A5) and (A6), 

tan { = l/tan p,, sin A. 

IV Evaluation of nA + n, 

Combine Eq. (28) (for J = A and J = B) 

nA + nB = -+h(tan(B, - rllA) + tan(0, + pB) + tan(0,4J -P,) + tam@, + Pu,) I. 

Combine the tangent terms 

nA + nA = -th[tan(e, + 0, + iuB - iu,)(I - tan(8, - iun) tan(& + illg)) 

+ tan 20,v( 1 - tan(6, -pun,) tan(t9, + PUN)) I. 
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Use the Taylor series expressions (such as Eq. (25)) in the first tangent term, expand 
this for small angles, and solve for 

n 
A 

+ n 
B 

= - h($ tan 2&)[ 1 - tan(& - PN) tan(4 + /hII 
1 + +M?;[ 1 - tan(8, --PA) tan(8, +&)I 

= 0(/z”). 

Note. The subscript 1 has been surpressed on ,u in the Appendix. Wherever ,B 
appears without a subscript it refers to P = sin-‘(l/M,). 
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